Метод математической индукции примеры решения. Старт в науке

Метод доказательства, о котором будет идти речь в данном пункте, основан на одной из аксиом натурального ряда.

Аксиома индукции. Пусть дано предложение, зависящее от переменной п, вместо которой можно подставлять любые натуральные числа. Обозначим его А(п). Пусть также предложение А верно для числа 1 и из того, что А верно для числа к , следует, что А верно для числа к+ 1. Тогда предложение А верно для всех натуральных значений п.

Символическая запись аксиомы:

Здесь пик- переменные по множеству натуральных чисел. Из аксиомы индукции получается следующее правило вывода:

Итак, для того чтобы доказать истинность предложения А, можно вначале доказать два утверждения: истинность высказывания А( 1), а также следствие А(к) => А(к+ 1).

Учитывая сказанное выше, опишем сущность метода

математической индукции.

Пусть требуется доказать, что предложение А(п) верно для всех натуральных п. Доказательство разбивается на два этапа.

  • 1- й этап. База индукции. Берем в качестве значения п число 1 и проверяем, что А( 1) есть истинное высказывание.
  • 2- й этап. Индуктивный переход. Доказываем, что при любом натуральном числе к верна импликация: если А{к ), то А(к+ 1).

Индуктивный переход начинается словами: «Возьмем произвольное натуральное число к, такое, что А(к)», или «Пусть для натурального числа к верно А(к)». Вместо слова «пусть» часто говорят «предположим, что...».

После этих слов буква к обозначает некий фиксированный объект, для которого выполняется соотношение А{к). Далее из А(к) выводим следствия, то есть строим цепочку предложений А(к) 9 Р , Pi, ..., Р„ = А(к+ 1), где каждое предложение Р, является истинным высказыванием или следствием предыдущих предложений. Последнее предложение Р„ должно совпадать с А(к+ 1). Отсюда заключаем: из А{к) следует А(к+ ).

Выполнение индуктивного перехода можно расчленить на два действия:

  • 1) Индуктивное предположение. Здесь мы предполагаем, что А к переменной н.
  • 2) На основе предположения доказываем, что А верно для числа?+1.

Пример 5.5.1. Докажем, что число п+п является четным при всех натуральных п.

Здесь А(п) = «п 2 +п - четное число». Требуется доказать, что А - тождественно истинный предикат. Применим метод математической индукции.

База индукции. Возьмем л=1. Подставим в выражение п +//, получим n 2 +n = I 2 + 1 = 2 - четное число, то есть /1(1) - истинное высказывание.

Сформулируем индуктивное предположение А{к) = «Число к 2 +к - четное». Можно сказать так: «Возьмем произвольное натуральное число к такое, что к 2 +к есть четное число».

Выведем отсюда утверждение А(кА-) = «Число (к+ 1) 2 +(?+1) - четное».

По свойствам операций выполним преобразования:

Первое слагаемое полученной суммы четно по предположению, второе четно по определению (так как имеет вид 2п). Значит, сумма есть четное число. Предложение А(к+ 1) доказано.

По методу математической индукции делаем вывод: предложение А(п) верно для всех натуральных п.

Конечно, нет необходимости каждый раз вводить обозначение А(п). Однако все же рекомендуется отдельной строкой формулировать индуктивное предположение и то, что требуется из него вывести.

Заметим, что утверждение из примера 5.5.1 можно доказать без использования метода математической индукции. Для этого достаточно рассмотреть два случая: когда п четно и когда п нечетно.

Многие задачи на делимость решаются методом математической индукции. Рассмотрим более сложный пример.

Пример 5.5.2. Докажем, что число 15 2и_| +1 делится на 8 при всех натуральных п.

Бача индукции. Возьмем /1=1. Имеем: число 15 2|_| +1 = 15+1 = 16 делится на число 8.

, что для некоторого

натурального числа к число 15 2 * ’+1 делится на 8.

Докажем , что тогда число а = 15 2(ЖН +1 делится 8.

Преобразуем число а:

По предположению, число 15 2А1 +1 делится на 8, значит, все первое слагаемое делится на 8. Второе слагаемое 224=8-28 также делится на 8. Таким образом, число а как разность двух чисел, кратных 8, делится на 8. Индуктивный переход обоснован.

На основе метода математической индукции заключаем, что для всех натуральных п число 15 2 " -1 -*-1 делится на 8.

Сделаем некоторые замечания по решенной задаче.

Доказанное утверждение можно сформулировать немного по-другому: «Число 15”"+1 делится на 8 при любых нечетных натуральных /и».

Во-вторых, из доказанного общего утверждения можно сделать частный вывод, доказательство которого может быть дано как отдельная задача: число 15 2015 +1 делится на 8. Поэтому иногда бывает полезно обобщить задачу, обозначив какое-то конкретное значение буквой, а затем применить метод математической индукции.

В самом общем понимании термин «индукция» означает, что на основе частных примеров делают общие выводы. Например, рассмотрев некоторые примеры сумм четных чисел 2+4=6, 2+8=10, 4+6=10, 8+12=20, 16+22=38, делаем вывод о том, что сумма любых двух четных чисел есть четное число.

В общем случае вот такая индукция может привести к неверным выводам. Приведем пример подобного неправильного рассуждения.

Пример 5.5.3. Рассмотрим число а = /г+я+41 при натуральном /?.

Найдем значения а при некоторых значениях п.

Пусть п= I. Тогда а = 43 - простое число.

Пусть /7=2. Тогда а = 4+2+41 = 47 - простое.

Пусть л=3. Тогда а = 9+3+41 = 53 - простое.

Пусть /7=4. Тогда а = 16+4+41 = 61 - простое.

Возьмите в качестве значений п следующие за четверкой числа, например 5, 6, 7, и убедитесь, что число а будет простым.

Делаем вывод: «При всех натуральных /? число а будет простым».

В результате получилось ложное высказывание. Приведем контрпример: /7=41. Убедитесь, что при данном п число а будет составным.

Термин «математическая индукция» несет в себе более узкий смысл, так как применение этого метода позволяет получить всегда верное заключение.

Пример 5.5.4. Получим на основе индуктивных рассуждений формулу общего члена арифметической прогрессии. Напомним, что арифметической профессией называется числовая последовательность, каждый член которой отличается от предыдущего на одно и то же число, называемое разностью прогрессии. Для того чтобы однозначно задать арифметическую профессию, нужно указать ее первый член а и разность d.

Итак, по определению а п+ = а п + d, при п> 1.

В школьном курсе математики, как правило, формула общего члена арифметической профессии устанавливается на основе частных примеров, то есть именно по индукции.

Если /7=1, ТО С 7| = Я|, ТО есть Я| = tf|+df(l -1).

Если /7=2, то я 2 = a+d, то есть а = Я|+*/(2-1).

Если /7=3, то я 3 = я 2 + = (a+d)+d = a+2d, то есть я 3 = Я|+(3-1).

Если /7=4, то я 4 = я 3 +*/ = (a+2d)+d = Я1+3 и т.д.

Приведенные частные примеры позволяют выдвинуть гипотезу: формула общего члена имеет вид а„ = a+(n-)d для всех /7>1.

Докажем эту формулу методом математической индукции.

База индукции проверена в предыдущих рассуждениях.

Пусть к - такой номер, при котором я* - a+{k-)d (индуктивное предположение ).

Докажем , что я*+! = a+((k+)-)d, то есть я*+1 = a x +kd.

По определению я*+1 = аь+d. а к = я | +(к -1 )d , значит, ац+ = я i +(А:-1)^/+с/ = я | +(А-1+1 )d = я i +kd , что и требовалось доказать (для обоснования индуктивного перехода).

Теперь формула я„ = a+{n-)d доказана для любого натурального номера /;.

Пусть дана некоторая последовательность я ь я 2 , я,„ ... (не

обязательно арифметическая или геометрическая прогрессия). Часто возникают задачи, где требуется суммировать первые п членов этой последовательности, то есть задать сумму Я|+я 2 +...+я и формулой, которая позволяет находить значения этой суммы, не вычисляя члены последовательности.

Пример 5.5.5. Докажем, что сумма первых п натуральных чисел равна

/?(/7 + 1)

Обозначим сумму 1+2+...+/7 через S n . Найдем значения S n для некоторых /7.

Заметим: для того чтобы найти сумму S 4 , можно воспользоваться вычисленным ранее значением 5 3 , так как 5 4 = 5 3 +4.

п(п +1)

Если подставить рассмотренные значения /? в терм ---то

получим, соответственно, те же суммы 1, 3, 6, 10. Эти наблюдения

. _ п(п + 1)

наталкивают на мысль, что формулу S „=--- можно использовать при

любом //. Докажем эту гипотезу методом математической индукции.

База индукции проверена. Выполним индуктивный переход.

Предположим , что формула верна для некоторого натурального числа

, к(к + 1)

к, то сеть сумма первых к натуральных чисел равна ----.

Докажем , что сумма первых (?+1) натуральных чисел равна

  • (* + !)(* + 2)

Выразим?*+1 через S k . Для этого в сумме S*+i сгруппируем первые к слагаемых, а последнее слагаемое запишем отдельно:

По индуктивному предположению S k = Значит, чтобы найти

сумму первых (?+1) натуральных чисел, достаточно к уже вычисленной

. „ к(к + 1) _ .. ..

сумме первых к чисел, равной ---, прибавить одно слагаемое (к+1).

Индуктивный переход обоснован. Тем самым выдвинутая вначале гипотеза доказана.

Мы привели доказательство формулы S n = п ^ п+ методом

математической индукции. Конечно, есть и другие доказательства. Например, можно записать сумму S, в порядке возрастания слагаемых, а затем в порядке убывания слагаемых:

Сумма слагаемых, стоящих в одном столбце, постоянна (в одной сумме каждое следующее слагаемое уменьшается на 1, а в другой увеличивается на 1) и равна (/г+1). Поэтому, сложив полученные суммы, будем иметь п слагаемых, равных (и+1). Итак, удвоенная сумма S„ равна п(п+ 1).

Доказанная формула может быть получена как частный случай формулы суммы первых п членов арифметической прогрессии.

Вернемся к методу математической индукции. Отметим, что первый этап метода математической индукции (база индукции) всегда необходим. Отсутствие этого этапа может привести к неверному выводу.

Пример 5.5.6. «Докажем» предложение: «Число 7"+1 делится на 3 при любом натуральном я».

«Предположим, что при некотором натуральном значении к число 7*+1 делится на 3. Докажем, что число 7 ж +1 делится на 3. Выполним преобразования:

Число 6 очевидно делится на 3. Число 1 к + делится на 3 по индуктивному предположению, значит, число 7-(7* + 1) также делится на 3. Поэтому разность чисел, делящихся на 3, будет также делиться на 3.

Предложение доказано».

Доказательство исходного предложения неверно, несмотря на то что индуктивный переход выполнен правильно. Действительно, при п= I имеем число 8, при п=2 - число 50, ..., и ни одно из этих чисел нс делится на 3.

Сделаем важное замечание об обозначении натурального числа при выполнении индуктивного перехода. При формулировке предложения А(п) буквой п мы обозначали переменную, вместо которой можно подставлять любые натуральные числа. При формулировке индуктивного предположения мы обозначали значение переменной буквой к. Однако очень часто вместо новой буквы к используют ту же самую букву, которой обозначается переменная. Это никак не влияет на структуру рассуждений при выполнении индуктивного перехода.

Рассмотрим еще несколько примеров задач, для решения которых можно применить метод математической индукции.

Пример 5.5.7. Найдем значение суммы

В задании переменная п не фигурирует. Однако рассмотрим последовательность слагаемых:

Обозначим S, = а+а 2 +...+а„. Найдем S „ при некоторых п. Если /1= 1, то S, =а, = -.

Если п= 2. то S, = а, + а? = - + - = - = -.

Если /?=3, то S-, = a,+a 7 + я, = - + - + - = - + - = - = -.

3 1 - 3 2 6 12 3 12 12 4

Можете самостоятельно вычислить значения S„ при /7 = 4; 5. Возникает

естественное предположение: S n = -- при любом натуральном /7. Докажем

это методом математической индукции.

База индукции проверена выше.

Выполним индуктивный переход , обозначая произвольно взятое

значение переменной п этой же буквой, то есть докажем, что из равенства

0 /7 _ /7 +1

S n =-следует равенство S , =-.

/7+1 /7 + 2

Предположим, что верно равенство S = - П -.

Выделим в сумме S„+ первые п слагаемых:

Применив индуктивное предположение, получим:

Сокращая дробь на (/7+1), будем иметь равенство S n +1 - , Л

Индуктивный переход обоснован.

Тем самым доказано, что сумма первых п слагаемых

  • 1 1 1 /7 ^
  • - +-+...+- равна -. Теперь возвратимся к первоначальной
  • 1-2 2-3 /?(// +1) /7 + 1

задаче. Для ее решения достаточно взять в качестве значения п число 99.

Тогда сумма -!- + -!- + -!- + ...+ --- будет равна числу 0,99.

1-2 2-3 3-4 99100

Постарайтесь вычислить данную сумму другим способом.

Пример 5.5.8. Докажем, что производная суммы любого конечного числа дифференцируемых функций равна сумме производных этих функций.

Пусть переменная /? обозначает количество данных функций. В случае, когда дана только одна функция, под суммой понимается именно эта функция. Поэтому если /7=1, то утверждение очевидно истинно:/" = /".

Предположим , что утверждение справедливо для набора из п функций (здесь снова вместо буквы к взята буква п), то есть производная суммы п функций равна сумме производных.

Докажем , что производная суммы (я+1) функций равна сумме производных. Возьмем произвольный набор, состоящий из п+ дифференцируемой функции: /1,/2, . Представим сумму этих функций

в виде g+f„+ 1, где g=f +/г + ... +/ t - сумма п функций. По индуктивному предположению производная функции g равна сумме производных: g" = ft +ft + ... +ft. Поэтому имеет место следующая цепочка равенств:

Индуктивный переход выполнен.

Таким образом, исходное предложение доказано для любого конечного числа функций.

В ряде случаев требуется доказать истинность предложения А(п) для всех натуральных я, начиная с некоторого значения с. Доказательство методом математической индукции в таких случаях проводится по следующей схеме.

База индукции. Доказываем, что предложение А верно для значения п, равного с.

Индуктивный переход. 1) Предполагаем, что предложение А верно для некоторого значения к переменной /?, которое больше либо равно с.

2) Доказываем, что предложение А истинно для значения /?, равного

Снова заметим, что вместо буквы к часто оставляют обозначение переменной п. В этом случае индуктивный переход начинают словами: «Предположим, что для некоторого значения п>с верно А(п). Докажем, что тогда верно А(п+ 1)».

Пример 5.5.9. Докажем, что при всех натуральных п> 5 верно неравенство 2” > и 2 .

База индукции. Пусть п= 5. Тогда 2 5 =32, 5 2 =25. Неравенство 32>25 истинно.

Индуктивный переход. Предположим , что имеет место неравенство 2 П >п 2 для некоторого натурального числа п> 5. Докажем , что тогда 2" +| > (п+1) 2 .

По свойствам степеней 2” +| = 2-2". Так как 2">я 2 (по индуктивному предположению), то 2-2" > 2я 2 (I).

Обоснуем, что 2п 2 больше (я+1) 2 . Это можно сделать разными способами. Достаточно решить квадратное неравенство 2х 2 >(х+) 2 во множестве действительных чисел и увидеть, что все натуральные числа, большие либо равные 5, являются его решениями.

Мы поступим следующим образом. Найдем разность чисел 2п 2 и (я+1) 2:

Так как и > 5, то я+1 > 6, значит, (я+1) 2 > 36. Поэтому разность больше 0. Итак, 2я 2 > (я+1) 2 (2).

По свойствам неравенств из (I) и (2) следует, что 2*2" > (я+1) 2 , что и требовалось доказать для обоснования индуктивного перехода.

На основе метода математической индукции заключаем, что неравенство 2" > я 2 истинно для любых натуральных чисел я.

Рассмотрим еще одну форму метода математической индукции. Отличие заключается в индуктивном переходе. Для его осуществления требуется выполнить два шага:

  • 1) предположить, что предложение А(п) верно при всех значениях переменной я, меньших некоторого числар;
  • 2) из выдвинутого предположения вывести, что предложение А(п) справедливо и для числар.

Таким образом, индуктивный переход требует доказательства следствия: [(Уи?) А{п)] => А(р). Заметим, что следствие можно переписать в виде: [(Уп^р) А(п)] => А(р+ 1).

В первоначальной формулировке метода математической индукции при доказательстве предложения А(р) мы опирались только на «предыдущее» предложение А(р- 1). Данная здесь формулировка метода позволяет выводить А(р), считая, что все предложения А(п), где я меньшер , истинны.

Пример 5.5.10. Докажем теорему: «Сумма внутренних углов любого я-угольника равна 180°(я-2)».

Для выпуклого многоугольника теорему легко доказать, если разбить его диагоналями, проведенными из одной вершины, на треугольники. Однако для невыпуклого многоугольника такая процедура может быть невозможна.

Докажем теорему для произвольного многоугольника методом математической индукции. Будем считать известным следующее утверждение, которое, строго говоря, требует отдельного доказательства: «В любом //-угольнике существует диагональ, лежащая целиком во внугренней его части».

Вместо переменной // можно подставлять любые натуральные числа, которые больше либо равны 3. Для п=Ъ теорема справедлива, так как в треугольнике сумма углов равна 180°.

Возьмем некоторый /7-угольник (р> 4) и предположим, что сумма углов любого //-угольника, где // р, равна 180°(//-2). Докажем, что сумма углов //-угольника равна 180°(//-2).

Проведем диагональ //-угольника, лежащую внутри него. Она разобьет //-угольник на два многоугольника. Пусть один из них имеет к сторон, другой - к 2 сторон. Тогда к+к 2 -2 = р, так как полученные многоугольники имеют общей стороной проведенную диагональ, не являющуюся стороной исходного //-угольника.

Оба числа к и к 2 меньше //. Применим к полученным многоугольникам индуктивное предположение: сумма углов А]-угольника равна 180°-(?i-2), а сумма углов? 2 -угольника равна 180°-(Аг 2 -2). Тогда сумма углов //-угольника будет равна сумме этих чисел:

180°*(Аг|-2)-н 180°(Аг2-2) = 180 о (Аг,-ьАг 2 -2-2) = 180°-(//-2).

Индуктивный переход обоснован. На основе метода математической индукции теорема доказана для любого //-угольника (//>3).

Применяя метод математической индукции, доказать, что для любого натурального n справедливы следующие равенства:
а) ;
б) .


Решение.

а) При n = 1 равенство справедливо. Предполагая справедливость равенства при n , покажем справедливость его и при n + 1. Действительно,

что и требовалось доказать.

б) При n = 1 справедливость равенства очевидна. Из предположения справедливости его при n следует

Учитывая равенство 1 + 2 + ... + n = n (n + 1)/2, получаем

1 3 + 2 3 + ... + n 3 + (n + 1) 3 = (1 + 2 + ... + n + (n + 1)) 2 ,

т. е. утверждение справедливо и при n + 1.

Пример 1. Доказать следующие равенства

где n О N .

Решение. a) При n = 1 равенство примет вид 1=1, следовательно, P (1) истинно. Предположим, что данное равенство справедливо, то есть, имеет место

. Следует проверить (доказать), что P (n + 1), то есть истинно. Поскольку (используется предположение индукции) получим то есть, P (n + 1) - истинное утверждение.

Таким образом, согласно методу математической индукции, исходное равенство справедливо для любого натурального n .

Замечание 2. Этот пример можно было решить и иначе. Действительно, сумма 1 + 2 + 3 + ... + n есть сумма первых n членов арифметической прогрессии с первым членом a 1 = 1 и разностью d = 1. В силу известной формулы , получим

b) При n = 1 равенство примет вид: 2·1 - 1 = 1 2 или 1=1, то есть, P (1) истинно. Допустим, что имеет место равенство

1 + 3 + 5 + ... + (2n - 1) = n 2 и докажем, что имеет место P (n + 1): 1 + 3 + 5 + ... + (2n - 1) + (2(n + 1) - 1) = (n + 1) 2 или 1 + 3 + 5 + ... + (2n - 1) + (2n + 1) = (n + 1) 2 .

Используя предположение индукции, получим

1 + 3 + 5 + ... + (2n - 1) + (2n + 1) = n 2 + (2n + 1) = (n + 1) 2 .

Таким образом, P (n + 1) истинно и, следовательно, требуемое равенство доказано.

Замечание 3. Этот пример можно решить (аналогично предыдущему) без использования метода математической индукции.

c) При n = 1 равенство истинно: 1=1. Допустим, что истинно равенство

и покажем, что то есть истинность P (n ) влечет истинность P (n + 1). Действительно, и, так как 2 n 2 + 7 n + 6 = (2 n + 3)(n + 2), получим и, следовательно, исходное равенство справедливо для любого натурального n .

d) При n = 1 равенство справедливо: 1=1. Допустим, что имеет место

и докажем, что

Действительно,

e) Утверждение P (1) справедливо: 2=2. Допустим, что равенство

справедливо, и докажем, что оно влечет равенство Действительно,

Следовательно, исходное равенство имеет место для любого натурального n .

f) P (1) справедливо: 1 / 3 = 1 / 3 . Пусть имеет место равенство P (n ):

. Покажем, что последнее равенство влечет следующее:

Действительно, учитывая, что P (n ) имеет место, получим

Таким образом, равенство доказано.

g) При n = 1 имеем a + b = b + a и, следовательно, равенство справедливо.

Пусть формула бинома Ньютона справедлива при n = k , то есть,

Тогда Используя равенство получим

Пример 2. Доказать неравенства

a) неравенство Бернулли: (1 + a ) n ≥ 1 + n a , a > -1, n О N .
b) x 1 + x 2 + ... + x n n , если x 1 x 2 · ... ·x n = 1 и x i > 0, .
c) неравенство Коши относительно среднего арифемтического и среднего геометрического
где x i > 0, , n ≥ 2.
d) sin 2n a + cos 2n a ≤ 1, n О N .
e)
f) 2 n > n 3 , n О N , n ≥ 10.

Решение. a) При n = 1 получаем истинное неравенство

1 + a ≥ 1 + a . Предположим, что имеет место неравенство

(1 + a ) n ≥ 1 + n a (1)
и покажем, что тогда имеет место и (1 + a ) n + 1 ≥ 1 + (n + 1)a .

Действительно, поскольку a > -1 влечет a + 1 > 0, то умножая обе части неравенства (1) на (a + 1), получим

(1 + a ) n (1 + a ) ≥ (1 + n a )(1 + a ) или (1 + a ) n + 1 ≥ 1 + (n + 1)a + n a 2 Поскольку n a 2 ≥ 0, следовательно, (1 + a ) n + 1 ≥ 1 + (n + 1)a + n a 2 ≥ 1 + (n + 1)a .

Таким образом, если P (n ) истинно, то и P (n + 1) истинно, следовательно, согласно принципу математической индукции, неравенство Бернулли справедливо.

b) При n = 1 получим x 1 = 1 и, следовательно, x 1 ≥ 1 то есть P (1) - справедливое утверждение. Предположим, что P (n ) истинно, то есть, если adica, x 1 ,x 2 ,...,x n - n положительных чисел, произведение которых равно единице, x 1 x 2 ·...·x n = 1, и x 1 + x 2 + ... + x n n .

Покажем, что это предложение влечет истинность следующего: если x 1 ,x 2 ,...,x n ,x n +1 - (n + 1) положительных чисел, таких, что x 1 x 2 ·...·x n ·x n +1 = 1, тогда x 1 + x 2 + ... + x n + x n + 1 ≥n + 1.

Рассмотрим следующие два случая:

1) x 1 = x 2 = ... = x n = x n +1 = 1. Тогда сумма этих чисел равна (n + 1), и требуемое неравество выполняется;

2) хотя бы одно число отлично от единицы, пусть, например, больше единицы. Тогда, поскольку x 1 x 2 · ... ·x n ·x n + 1 = 1, существует еще хотя бы одно число, отличное от единицы (точнее, меньше единицы). Пусть x n + 1 > 1 и x n < 1. Рассмотрим n положительных чисел

x 1 ,x 2 ,...,x n -1 ,(x n ·x n +1). Произведение этих чисел равно единице, и, согласно гипотезе, x 1 + x 2 + ... + x n -1 + x n x n + 1 ≥ n . Последнее неравенство переписывается следующим образом: x 1 + x 2 + ... + x n -1 + x n x n +1 + x n + x n +1 ≥ n + x n + x n +1 или x 1 + x 2 + ... + x n -1 + x n + x n +1 ≥ n + x n + x n +1 - x n x n +1 .

Поскольку

(1 - x n )(x n +1 - 1) > 0, то n + x n + x n +1 - x n x n +1 = n + 1 + x n +1 (1 - x n ) - 1 + x n =
= n + 1 + x n +1 (1 - x n ) - (1 - x n ) = n + 1 + (1 - x n )(x n +1 - 1) ≥ n + 1. Следовательно, x 1 + x 2 + ... + x n + x n +1 ≥ n +1, то есть, если P (n ) справедливо, то и P (n + 1) справедливо. Неравенство доказано.

Замечание 4. Знак равенства имеет место тогда и только тогда, когда x 1 = x 2 = ... = x n = 1.

c) Пусть x 1 ,x 2 ,...,x n - произвольные положительные числа. Рассмотрим следующие n положительных чисел:

Поскольку их произведение равно единице: согласно ранее доказанному неравенству b), следует, что откуда

Замечание 5. Равенство выполняется если и только если x 1 = x 2 = ... = x n .

d) P (1) - справедливое утверждение: sin 2 a + cos 2 a = 1. Предположим, что P (n ) - истинное утверждение:

Sin 2n a + cos 2n a ≤ 1 и покажем, что имеет место P (n + 1). Действительно, sin 2(n + 1) a + cos 2(n + 1) a = sin 2n a ·sin 2 a + cos 2n a ·cos 2 a < sin 2n a + cos 2n a ≤ 1 (если sin 2 a ≤ 1, то cos 2 a < 1, и обратно: если cos 2 a ≤ 1, то sin 2 a < 1). Таким образом, для любого n О N sin 2n a + cos 2n ≤ 1 и знак равенства достигается лишь при n = 1.

e) При n = 1 утверждение справедливо: 1 < 3 / 2 .

Допустим, что и докажем, что

Поскольку
учитывая P (n ), получим

f) Учитывая замечание 1 , проверим P (10): 2 10 > 10 3 , 1024 > 1000, следовательно, для n = 10 утверждение справедливо. Предположим, что 2 n > n 3 (n > 10) и докажем P (n + 1), то есть 2 n +1 > (n + 1) 3 .

Поскольку при n > 10 имеем или , следует, что

2n 3 > n 3 + 3n 2 + 3n + 1 или n 3 > 3n 2 + 3n + 1. Учитывая неравенство (2 n > n 3 ), получим 2 n +1 = 2 n ·2 = 2 n + 2 n > n 3 + n 3 > n 3 + 3n 2 + 3n + 1 = (n + 1) 3 .

Таким образом, согласно методу математической индукции, для любого натурального n О N , n ≥ 10 имеем 2 n > n 3 .

Пример 3. Доказать, что для любого n О N

Решение. a) P (1) - истинное утверждение (0 делится на 6). Пусть P (n ) справедливо, то есть n (2n 2 - 3n + 1) = n (n - 1)(2n - 1) делится на 6. Покажем, что тогда имеет место P (n + 1), то есть, (n + 1)n (2n + 1) делится на 6. Действительно, поскольку

и, как n (n - 1)(2 n - 1), так и 6 n 2 делятся на 6, тогда и их сумма n (n + 1)(2 n + 1) делится 6.

Таким образом, P (n + 1) - справедливое утверждение, и, следовательно, n (2n 2 - 3n + 1) делится на 6 для любого n О N .

b) Проверим P (1): 6 0 + 3 2 + 3 0 = 11, следовательно, P (1) - справедливое утверждение. Следует доказать, что если 6 2n -2 + 3 n +1 + 3 n -1 делится на 11 (P (n )), тогда и 6 2n + 3 n +2 + 3 n также делится на 11 (P (n + 1)). Действительно, поскольку

6 2n + 3 n +2 + 3 n = 6 2n -2+2 + 3 n +1+1 + 3 n -1+1 = = 6 2 ·6 2n -2 + 3·3 n +1 + 3·3 n -1 = 3·(6 2n -2 + 3 n +1 + 3 n -1) + 33·6 2n -2 и, как 6 2n -2 + 3 n +1 + 3 n -1 , так и 33·6 2n -2 делятся на 11, тогда и их сумма 6 2n + 3 n +2 + 3 n делится на 11. Утверждение доказано. Индукция в геометрии

Пример 4. Вычислить сторону правильного 2 n -угольника, вписанного в окружность радиуса R .

Метод математической индукции

Вступление

Основная часть

  1. Полная и неполная индукция
  2. Принцип математической индукции
  3. Метод математической индукции
  4. Решение примеров
  5. Равенства
  6. Деление чисел
  7. Неравенства

Заключение

Список использованной литературы

Вступление

В основе всякого математического исследования лежат дедуктивный и индуктивный методы. Дедуктивный метод рассуждений - это рассуждение от общего к частному, т.е. рассуждение, исходным моментом которого является общий результат, а заключительным моментом – частный результат. Индукция применяется при переходе от частных результатов к общим, т.е. является методом, противоположным дедуктивному.

Метод математической индукции можно сравнить с прогрессом. Мы начинаем с низшего, в результате логического мышления приходим к высшему. Человек всегда стремился к прогрессу, к умению развивать свою мысль логически, а значит, сама природа предначертала ему размышлять индуктивно.

Хотя и выросла область применения метода математической индукции, в школьной программе ему отводится мало времени. Ну, скажите, что полезного человеку принесут те два-три урока, за которые он услышит пять слов теории, решит пять примитивных задач, и, в результате получит пятёрку за то, что он ничего не знает.

А ведь это так важно - уметь размышлять индуктивно.

Основная часть

По своему первоначальному смыслу слово “индукция” применяется к рассуждениям, при помощи которых получают общие выводы, опираясь на ряд частных утверждений. Простейшим методом рассуждений такого рода является полная индукция. Вот пример подобного рассуждения.

Пусть требуется установить, что каждое натуральное чётное число n в пределах 4< n < 20 представимо в виде суммы двух простых чисел. Для этого возьмём все такие числа и выпишем соответствующие разложения:

4=2+2; 6=3+3; 8=5+3; 10=7+3; 12=7+5;

14=7+7; 16=11+5; 18=13+5; 20=13+7.

Эти девять равенств показывают, что каждое из интересующих нас чисел действительно представляется в виде суммы двух простых слагаемых.

Таким образом, полная индукция заключается в том, что общее утверждение доказывается по отдельности в каждом из конечного числа возможных случаев.

Иногда общий результат удаётся предугадать после рассмотрения не всех, а достаточно большого числа частных случаев (так называемая неполная индукция).

Результат, полученный неполной индукцией, остается, однако, лишь гипотезой, пока он не доказан точным математическим рассуждением, охватывающим все частные случаи. Иными словами, неполная индукция в математике не считается законным методом строгого доказательства, но является мощным методом открытия новых истин.

Пусть, например, требуется найти сумму первых n последовательных нечётных чисел. Рассмотрим частные случаи:

1+3+5+7+9=25=5 2

После рассмотрения этих нескольких частных случаев напрашивается следующий общий вывод:

1+3+5+…+(2n-1)=n 2

т.е. сумма n первых последовательных нечётных чисел равна n 2

Разумеется, сделанное наблюдение ещё не может служить доказательством справедливости приведённой формулы.

Полная индукция имеет в математике лишь ограниченное применение. Многие интересные математические утверждения охватывают бесконечное число частных случаев, а провести проверку для бесконечного числа случаев мы не в состоянии. Неполная же индукция часто приводит к ошибочным результатам.

Во многих случаях выход из такого рода затруднений заключается в обращении к особому методу рассуждений, называемому методом математической индукции. Он заключается в следующем.

Пусть нужно доказать справедливость некоторого утверждения для любого натурального числа n (например нужно доказать, что сумма первых n нечётных чисел равна n 2). Непосредственная проверка этого утверждения для каждого значения n невозможна, поскольку множество натуральных чисел бесконечно. Чтобы доказать это утверждение, проверяют сначала его справедливость для n=1. Затем доказывают, что при любом натуральном значении k из справедливости рассматриваемого утверждения при n=k вытекает его справедливость и при n=k+1.

Тогда утверждение считается доказанным для всех n. В самом деле, утверждение справедливо при n=1. Но тогда оно справедливо и для следующего числа n=1+1=2. Из справедливости утверждения для n=2 вытекает его справедливость для n=2+

1=3. Отсюда следует справедливость утверждения для n=4 и т.д. Ясно, что, в конце концов, мы дойдём до любого натурального числа n. Значит, утверждение верно для любого n.

Обобщая сказанное, сформулируем следующий общий принцип.

Принцип математической индукции.

Если предложение А(n), зависящее от натурального числа n, истинно для n=1 и из того, что оно истинно для n=k (где k-любое натуральное число), следует, что оно истинно и для следующего числа n=k+1, то предположение А(n) истинно для любого натурального числа n.

В ряде случаев бывает нужно доказать справедливость некоторого утверждения не для всех натуральных чисел, а лишь для n>p, где p-фиксированное натуральное число. В этом случае принцип математической индукции формулируется следующим образом.

Если предложение А(n) истинно при n=p и если А(k)ÞА(k+1) для любого k>p, то предложение А(n) истинно для любого n>p.

Доказательство по методу математической индукции проводиться следующим образом. Сначала доказываемое утверждение проверяется для n=1, т.е. устанавливается истинность высказывания А(1). Эту часть доказательства называют базисом индукции. Затем следует часть доказательства, называемая индукционным шагом. В этой части доказывают справедливость утверждения для n=k+1 в предположении справедливости утверждения для n=k (предположение индукции), т.е. доказывают, что А(k)ÞA(k+1).

Доказать, что 1+3+5+…+(2n-1)=n 2 .

Решение: 1) Имеем n=1=1 2 . Следовательно,

утверждение верно при n=1, т.е. А(1) истинно.

2) Докажем, что А(k)ÞA(k+1).

Пусть k-любое натуральное число и пусть утверж-дение справедливо для n=k, т.е.

1+3+5+…+(2k-1)=k 2 .

Докажем, что тогда утверждение справедливо и для следующего натурального числа n=k+1, т.е. что

1+3+5+…+(2k+1)=(k+1) 2 .

В самом деле,

1+3+5+…+(2k-1)+(2k+1)=k 2 +2k+1=(k+1) 2 .

Итак, А(k)ÞА(k+1). На основании принципа математической индукции заключаем, что предпо-ложение А(n) истинно для любого nÎN.

Доказать, что

1+х+х 2 +х 3 +…+х n =(х n+1 -1)/(х-1), где х¹1

Решение: 1) При n=1 получаем

1+х=(х 2 -1)/(х-1)=(х-1)(х+1)/(х-1)=х+1

следовательно, при n=1 формула верна; А(1) ис-тинно.

2) Пусть k-любое натуральное число и пусть формула верна при n=k, т.е.

1+х+х 2 +х 3 +…+х k =(х k+1 -1)/(х-1).

Докажем, что тогда выполняется равенство

1+х+х 2 +х 3 +…+х k +x k+1 =(x k+2 -1)/(х-1).

В самом деле

1+х+х 2 +x 3 +…+х k +x k+1 =(1+x+x 2 +x 3 +…+x k)+x k+1 =

=(x k+1 -1)/(x-1)+x k+1 =(x k+2 -1)/(x-1).

Итак, А(k)ÞA(k+1). На основании принципа математической индукции заключаем, что форму-ла верна для любого натурального числа n.

Доказать, что число диагоналей выпуклого n-угольника равно n(n-3)/2.

Решение: 1) При n=3 утверждение спра-

А 3 ведливо, ибо в треугольнике

 А 3 =3(3-3)/2=0 диагоналей;

А 2 А(3) истинно.

2) Предположим, что во всяком

выпуклом k-угольнике имеет-

А 1 ся А k =k(k-3)/2 диагоналей.

А k Докажем, что тогда в выпуклом

(k+1)-угольнике число

диагоналей А k+1 =(k+1)(k-2)/2.

Пусть А 1 А 2 А 3 …A k A k+1 -выпуклый (k+1)-уголь-ник. Проведём в нём диагональ A 1 A k . Чтобы под-считать общее число диагоналей этого (k+1)-уголь-ника нужно подсчитать число диагоналей в k-угольнике A 1 A 2 …A k , прибавить к полученному числу k-2, т.е. число диагоналей (k+1)-угольника, исходящих из вершины А k+1 , и, кроме того, следует учесть диагональ А 1 А k .

Таким образом,

 k+1 = k +(k-2)+1=k(k-3)/2+k-1=(k+1)(k-2)/2.

Итак, А(k)ÞA(k+1). Вследствие принципа математической индукции утверждение верно для любого выпуклого n-угольника.

Доказать, что при любом n справедливо утвер-ждение:

1 2 +2 2 +3 2 +…+n 2 =n(n+1)(2n+1)/6.

Решение: 1) Пусть n=1, тогда

Х 1 =1 2 =1(1+1)(2+1)/6=1.

Значит, при n=1 утверждение верно.

2) Предположим, что n=k

Х k =k 2 =k(k+1)(2k+1)/6.

3) Рассмотрим данное утвержде-ние при n=k+1

X k+1 =(k+1)(k+2)(2k+3)/6.

X k+1 =1 2 +2 2 +3 2 +…+k 2 +(k+1) 2 =k(k+1)(2k+1)/6+ +(k+1) 2 =(k(k+1)(2k+1)+6(k+1) 2)/6=(k+1)(k(2k+1)+

6(k+1))/6=(k+1)(2k 2 +7k+6)/6=(k+1)(2(k+3/2)(k+

2))/6=(k+1)(k+2)(2k+3)/6.

Мы доказали справедливость равенства и при n=k+1, следовательно, в силу метода математиче-ской индукции, утверждение верно для любого на-турального n.

Доказать, что для любого натурального n спра-ведливо равенство:

1 3 +2 3 +3 3 +…+n 3 =n 2 (n+1) 2 /4.

Решение: 1) Пусть n=1.

Тогда Х 1 =1 3 =1 2 (1+1) 2 /4=1.

Мы видим, что при n=1 утверждение верно.

2) Предположим, что равенство верно при n=k

X k =k 2 (k+1) 2 /4.

3) Докажем истинность этого ут-верждения для n=k+1, т.е.

Х k+1 =(k+1) 2 (k+2) 2 /4. X k+1 =1 3 +2 3 +…+k 3 +(k+1) 3 =k 2 (k+1) 2 /4+(k+1) 3 =(k 2 (k++1) 2 +4(k+1) 3)/4=(k+1) 2 (k 2 +4k+4)/4=(k+1) 2 (k+2) 2 /4.

Из приведённого доказательства видно, что ут-верждение верно при n=k+1, следовательно, равен-ство верно при любом натуральном n.

Доказать, что

((2 3 +1)/(2 3 -1))´((3 3 +1)/(3 3 -1))´…´((n 3 +1)/(n 3 -1))=3n(n+1)/2(n 2 +n+1), где n>2.

Решение: 1) При n=2 тождество выглядит: (2 3 +1)/(2 3 -1)=(3´2´3)/2(2 2 +2+1),

т.е. оно верно.

2) Предположим, что выражение верно при n=k

(2 3 +1)/(2 3 -1)´…´(k 3 +1)/(k 3 -1)=3k(k+1)/2(k 2 +k+1).

3) Докажем верность выражения при n=k+1.

(((2 3 +1)/(2 3 -1))´…´((k 3 +1)/(k 3 -1)))´(((k+1) 3 +

1)/((k+1) 3 -1))=(3k(k+1)/2(k 2 +k+1))´((k+2)((k+

1) 2 -(k+1)+1)/k((k+1) 2 +(k+1)+1))=3(k+1)(k+2)/2´

´((k+1) 2 +(k+1)+1).

Мы доказали справедливость равенства и при n=k+1, следовательно, в силу метода математиче-ской индукции, утверждение верно для любого n>2

Доказать, что

1 3 -2 3 +3 3 -4 3 +…+(2n-1) 3 -(2n) 3 =-n 2 (4n+3)

для любого натурального n.

Решение: 1) Пусть n=1, тогда

1 3 -2 3 =-1 3 (4+3); -7=-7.

2) Предположим, что n=k, тогда

1 3 -2 3 +3 3 -4 3 +…+(2k-1) 3 -(2k) 3 =-k 2 (4k+3).

3) Докажем истинность этого ут-верждения при n=k+1

(1 3 -2 3 +…+(2k-1) 3 -(2k) 3)+(2k+1) 3 -(2k+2) 3 =-k 2 (4k+3)+

+(2k+1) 3 -(2k+2) 3 =-(k+1) 3 (4(k+1)+3).

Доказана и справедливость равенства при n=k+1, следовательно утверждение верно для лю-бого натурального n.

Доказать верность тождества

(1 2 /1´3)+(2 2 /3´5)+…+(n 2 /(2n-1)´(2n+1))=n(n+1)/2(2n+1)

для любого натурального n.

1) При n=1 тождество верно 1 2 /1´3=1(1+1)/2(2+1).

2) Предположим, что при n=k

(1 2 /1´3)+…+(k 2 /(2k-1)´(2k+1))=k(k+1)/2(2k+1).

3) Докажем, что тождество верно при n=k+1.

(1 2 /1´3)+…+(k 2 /(2k-1)(2k+1))+(k+1) 2 /(2k+1)(2k+3)=(k(k+1)/2(2k+1))+((k+1) 2 /(2k+1)(2k+3))=((k+1)/(2k+1))´((k/2)+((k+1)/(2k+3)))=(k+1)(k+2)´ (2k+1)/2(2k+1)(2k+3)=(k+1)(k+2)/2(2(k+1)+1).

Из приведённого доказательства видно, что ут-верждение верно при любом натуральном n.

Доказать, что (11 n+2 +12 2n+1) делится на 133 без остатка.

Решение: 1) Пусть n=1, тогда

11 3 +12 3 =(11+12)(11 2 -132+12 2)=23´133.

Но (23´133) делится на 133 без остатка, значит при n=1 утверждение верно; А(1) истинно.

2) Предположим, что (11 k+2 +12 2k+1) делится на 133 без остатка.

3) Докажем, что в таком случае

(11 k+3 +12 2k+3) делится на 133 без остатка. В самом деле 11 k+3 +12 2л+3 =11´11 k+2 +12 2´ 12 2k+1 =11´11 k+2 +

+(11+133)´12 2k+1 =11(11 k+2 +12 2k+1)+133´12 2k+1 .

Полученная сумма делится на 133 без остатка, так как первое её слагаемое делится на 133 без ос-татка по предположению, а во втором одним из множителей выступает 133. Итак, А(k)ÞА(k+1). В силу метода математической индукции утвержде-ние доказано.

Доказать, что при любом n 7 n -1 делится на 6 без остатка.

Решение: 1) Пусть n=1, тогда Х 1 =7 1 -1=6 де-лится на 6 без остатка. Значит при n=1 утвержде-ние верно.

2) Предположим, что при n=k

7 k -1 делится на 6 без остатка.

3) Докажем, что утверждение справедливо для n=k+1.

X k+1 =7 k+1 -1=7´7 k -7+6=7(7 k -1)+6.

Первое слагаемое делится на 6, поскольку 7 k -1 делится на 6 по предположению, а вторым слага-емым является 6. Значит 7 n -1 кратно 6 при любом натуральном n. В силу метода математической ин-дукции утверждение доказано.

Доказать, что 3 3n-1 +2 4n-3 при произвольном на-туральном n делится на 11.
Решение: 1) Пусть n=1, тогда

Х 1 =3 3-1 +2 4-3 =3 2 +2 1 =11 делится на 11 без остат-ка. Значит, при n=1 утверждение верно.

2) Предположим, что при n=k

X k =3 3k-1 +2 4k-3 делится на 11 без остатка.

3) Докажем, что утверждение верно для n=k+1.

X k+1 =3 3(k+1)-1 +2 4(k+1)-3 =3 3k+2 +2 4k+1 =3 3´ 3 3k-1 +2 4´ 2 4k-3 =

27´3 3k-1 +16´2 4k-3 =(16+11)´3 3k-1 +16´2 4k-3 =16´3 3k-1 +

11´3 3k-1 +16´2 4k-3 =16(3 3k-1 +2 4k-3)+11´3 3k-1 .

Первое слагаемое делится на 11 без остатка, поскольку 3 3k-1 +2 4k-3 делится на 11 по предположе-нию, второе делится на 11, потому что одним из его множителей есть число 11. Значит и сумма де-лится на 11 без остатка при любом натуральном n. В силу метода математической индукции утвер-ждение доказано.

Доказать, что 11 2n -1 при произвольном нату-ральном n делится на 6 без остатка.

Решение: 1) Пусть n=1, тогда 11 2 -1=120 делится на 6 без остатка. Значит при n=1 утвержде-ние верно.

2) Предположим, что при n=k

11 2k -1 делится на 6 без остатка.

11 2(k+1) -1=121´11 2k -1=120´11 2k +(11 2k -1).

Оба слагаемых делятся на 6 без остатка: пер-вое содержит кратное 6-ти число 120, а второе де-лится на 6 без остатка по предположению. Значит и сумма делится на 6 без остатка. В силу метода математической индукции утверждение доказано.

Доказать, что 3 3n+3 -26n-27 при произвольном натуральном n делится на 26 2 (676) без остатка.

Решение: Предварительно докажем, что 3 3n+3 -1 делится на 26 без остатка.

  1. При n=0
  2. 3 3 -1=26 делится на 26

  3. Предположим, что при n=k
  4. 3 3k+3 -1 делится на 26

  5. Докажем, что утверждение

верно при n=k+1.

3 3k+6 -1=27´3 3k+3 -1=26´3 3л+3 +(3 3k+3 -1) –делится на 26

Теперь проведём доказательство утвер-ждения, сформулированного в условии задачи.

1) Очевидно, что при n=1 утвер-ждение верно

3 3+3 -26-27=676

2) Предположим, что при n=k

выражение 3 3k+3 -26k-27 делится на 26 2 без остатка.

3) Докажем, что утверждение верно при n=k+1

3 3k+6 -26(k+1)-27=26(3 3k+3 -1)+(3 3k+3 -26k-27).

Оба слагаемых делятся на 26 2 ; первое делится на 26 2 , потому что мы доказали делимость на 26 выражения, стоящего в скобках, а второе делится по предположению индукции. В силу метода мате-матической индукции утверждение доказано.

Доказать, что если n>2 и х>0, то справедливо неравенство

(1+х) n >1+n´х.

Решение: 1) При n=2 неравенство справед-ливо, так как

(1+х) 2 =1+2х+х 2 >1+2х.

Значит, А(2) истинно.

2) Докажем, что А(k)ÞA(k+1), если k> 2. Предположим, что А(k) истинно, т.е., что справедливо неравенство

(1+х) k >1+k´x. (3)

Докажем, что тогда и А(k+1) истинно, т.е., что справедливо неравенство

(1+x) k+1 >1+(k+1)´x.

В самом деле, умножив обе части неравенства (3) на положительное число 1+х, получим

(1+x) k+1 >(1+k´x)(1+x).

Рассмотрим правую часть последнего неравен-

ства; имеем

(1+k´x)(1+x)=1+(k+1)´x+k´x 2 >1+(k+1)´x.

В итоге получаем, что

(1+х) k+1 >1+(k+1)´x.

Итак, А(k)ÞA(k+1). На основании принципа математической индукции можно утверждать, что неравенство Бернулли справедливо для любого

Доказать, что справедливо неравенство

(1+a+a 2) m > 1+m´a+(m(m+1)/2)´a 2 при а> 0.

Решение: 1) При m=1

(1+а+а 2) 1 > 1+а+(2/2)´а 2 обе части равны.

2) Предположим, что при m=k

(1+a+a 2) k >1+k´a+(k(k+1)/2)´a 2

3) Докажем, что при m=k+1 не-равенство верно

(1+a+a 2) k+1 =(1+a+a 2)(1+a+a 2) k >(1+a+a 2)(1+k´a+

+(k(k+1)/2)´a 2)=1+(k+1)´a+((k(k+1)/2)+k+1)´a 2 +

+((k(k+1)/2)+k)´a 3 +(k(k+1)/2)´a 4 > 1+(k+1)´a+

+((k+1)(k+2)/2)´a 2 .

Мы доказали справедливость неравенства при m=k+1, следовательно, в силу метода математиче-ской индукции, неравенство справедливо для лю-бого натурального m.

Доказать, что при n>6 справедливо неравенство

3 n >n´2 n+1 .

Решение: Перепишем неравенство в виде

  1. При n=7 имеем
  2. 3 7 /2 7 =2187/128>14=2´7

    неравенство верно.

  3. Предположим, что при n=k

3) Докажем верность неравен-ства при n=k+1.

3 k+1 /2 k+1 =(3 k /2 k)´(3/2)>2k´(3/2)=3k>2(k+1).

Так как k>7, последнее неравенство очевидно.

В силу метода математической индукции неравен-ство справедливо для любого натурального n.

Доказать, что при n>2 справедливо неравенство

1+(1/2 2)+(1/3 2)+…+(1/n 2)<1,7-(1/n).

Решение: 1) При n=3 неравенство верно

1+(1/2 2)+(1/3 2)=245/180<246/180=1,7-(1/3).

  1. Предположим, что при n=k

1+(1/2 2)+(1/3 2)+…+(1/k 2)=1,7-(1/k).

3) Докажем справедливость не-

равенства при n=k+1

(1+(1/2 2)+…+(1/k 2))+(1/(k+1) 2)<1,7-(1/k)+(1/(k+1) 2).

Докажем, что 1,7-(1/k)+(1/(k+1) 2)<1,7-(1/k+1)Û

Û(1/(k+1) 2)+(1/k+1)<1/kÛ(k+2)/(k+1) 2 <1/kÛ

Ûk(k+2)<(k+1) 2Û k 2 +2k

Последнее очевидно, а поэтому

1+(1/2 2)+(1/3 2)+…+(1/(k+1) 2)<1,7-(1/k+1).

В силу метода математической индукции не-равенство доказано.

Заключение

Вчастности изучив метод математической индукции, я повысил свои знания в этой облас-ти математики, а также научился решать задачи, которые раньше были мне не под силу.

В основном это были логические и занима-тельные задачи, т.е. как раз те, которые повы-шают интерес к самой математике как к науке. Решение таких задач становится заниматель-ным занятием и может привлечь в математиче-ские лабиринты всё новых любознательных. По-моему, это является основой любой науки.

Продолжая изучать метод математической индукции, я постараюсь научиться применять его не только в математике, но и в решении проблем физики, химии и самой жизни.

МАТЕМАТИКА:

ЛЕКЦИИ, ЗАДАЧИ, РЕШЕНИЯ

Учебное пособие / В.Г.Болтянский, Ю.В.Сидоров, М.И.Шабунин. ООО “Попурри” 1996.

АЛГЕБРА И НАЧАЛА АНАЛИЗА

Учебное пособие / И.Т.Демидов,А.Н.Колмогоров, С.И.Шварцбург,О.С.Ивашев-Мусатов, Б.Е.Вейц. “Просвещение” 1975.

Библиографическое описание: Баданин А. С., Сизова М. Ю. Применение метода математической индукции к решению задач на делимость натуральных чисел // Юный ученый. — 2015. — №2. — С. 84-86..02.2019).



В математических олимпиадах часто встречаются достаточно трудные задачи на доказательство делимости натуральных чисел. Перед школьниками возникает проблема: как найти универсальный математический метод, позволяющий решать подобные задачи?

Оказывается, большинство задач на доказательство делимости можно решать методом математической индукции, но в школьных учебниках уделяется очень мало внимания этому методу, чаще всего приводится краткое теоретическое описание и разбирается несколько задач.

Метод математической индукции мы находим в теории чисел. На заре теории чисел математики открыли многие факты индуктивным путем: Л. Эйлер и К. Гаусс рассматривали подчас тысячи примеров, прежде чем подметить числовую закономерность и поверить в нее. Но одновременно они понимали, сколь обманчивыми могут быть гипотезы, прошедшие «конечную» проверку. Для индуктивного перехода от утверждения, проверенного для конечного подмножества, к аналогичному утверждению для всего бесконечного множества необходимо доказательство. Такой способ предложил Блез Паскаль, который нашел общий алгоритм для нахождения признаков делимости любого целого числа на любое другое целое число (трактат «О характере делимости чисел).

Метод математической индукции используется, чтобы доказать путем рассуждений истинность некоего утверждения для всех натуральных чисел или истинность утверждения начиная с некоторого числа n.

Решение задач на доказательство истинности некоторого утверждения методом математической индукции состоит из четырех этапов (рис. 1):

Рис. 1. Схема решения задачи

1. Базис индукции . Проверяют справедливость утверждения для наименьшего из натуральных чисел, при котором утверждение имеет смысл.

2. Индукционное предположение . Предполагаем, что утверждение верно для некоторого значения k.

3. Индукционный переход . Доказываем, что утверждение справедливо для k+1.

4. Вывод . Если такое доказательство удалось довести до конца, то, на основе принципа математической индукции можно утверждать, что утверждение верно для любого натурального числа n.

Рассмотрим применение метода математической индукции к решению задач на доказательство делимости натуральных чисел.

Пример 1 . Доказать, что число 5 кратно 19, где n - натуральное число.

Доказательство:

1) Проверим, что эта формула верна при n = 1: число =19 кратно 19.

2) Пусть эта формула верна для n = k, т. е. число кратно 19.

Кратно 19. Действительно, первое слагаемое делится на 19 в силу предположения (2); второе слагаемое тоже делится на 19, потому что содержит множитель 19.

Пример 2. Доказать, что сумма кубов трех последовательных натуральных чисел делится на 9.

Доказательство:

Докажем утверждение: «Для любого натурального числа n выражение n 3 +(n+1) 3 +(n+2) 3 кратно 9.

1) Проверим, что эта формула верна при n = 1: 1 3 +2 3 +3 3 =1+8+27=36 кратно 9.

2) Пусть эта формула верна для n = k, т. е. k 3 +(k+1) 3 +(k+2) 3 кратно 9.

3) Докажем, что формула верна и для n = k + 1, т. е. (k+1) 3 +(k+2) 3 +(k+3) 3 кратно 9. (k+1) 3 +(k+2) 3 +(k+3) 3 =(k+1) 3 +(k+2) 3 + k 3 + 9k 2 +27 k+ 27=(k 3 +(k+1) 3 +(k+2) 3)+9(k 2 +3k+ 3).

Полученное выражение содержит два слагаемых, каждое из которых делится на 9, таким образом, сумма делится на 9.

4) Оба условия принципа математической индукции выполнены, следовательно, предложение истинно при всех значениях n.

Пример 3. Доказать, что при любом натуральном n число 3 2n+1 +2 n+2 делится на 7.

Доказательство:

1) Проверим, что эта формула верна при n = 1: 3 2*1+1 +2 1+2 = 3 3 +2 3 =35, 35 кратно 7.

2) Пусть эта формула верна для n = k, т. е. 3 2 k +1 +2 k +2 делится на 7.

3) Докажем, что формула верна и для n = k + 1, т. е.

3 2(k +1)+1 +2 (k +1)+2 =3 2 k +1 ·3 2 +2 k +2 ·2 1 =3 2 k +1 ·9+2 k +2 ·2=3 2 k +1 ·9+2 k +2 ·(9–7)=(3 2 k +1 +2 k +2)·9–7·2 k +2 .Т. к. (3 2 k +1 +2 k +2)·9 делится на 7 и 7·2 k +2 делится на 7, то и их разность делится на 7.

4) Оба условия принципа математической индукции выполнены, следовательно, предложение истинно при всех значениях n.

Многие задачи на доказательство в теории делимости натуральных чисел удобно решать с применением метода математической индукции, можно даже сказать, что решение задач данным методом вполне алгоритмизировано, достаточно выполнить 4 основных действия. Но универсальным этот метод назвать нельзя, т. к. присутствуют и недостатки: во-первых, доказывать можно только на множестве натуральных чисел, а во-вторых, доказывать можно только для одной переменной.

Для развития логического мышления, математической культуры этот метод является необходимым инструментом, ведь ещё великий русский математик А. Н. Колмогоров говорил: «Понимание и умение правильно применять принцип математической индукции, является хорошим критерием логической зрелости, которая совершенно необходима математику».

Литература:

1. Виленкин Н. Я. Индукция. Комбинаторика. - М.: Просвещение, 1976. - 48 с.

2. Генкин Л. О математической индукции. - М., 1962. - 36 с.

3. Соломинский И. С. Метод математической индукции. - М.: Наука, 1974. - 63с.

4. Шарыгин И. Ф. Факультативный курс по математике: Решение задач: Учеб.пособие для 10 кл. сред.шк. - М.: Просвещение, 1989. - 252 с.

5. Шень А. Математическая индукция. - М.: МЦНМО,2007.- 32 с.

Математическая индукция лежит в основе одного из самых распространенных методов математических доказательств. С его помощью можно доказать большую часть формул с натуральными числами n , например, формулу нахождения суммы первых членов прогрессии S n = 2 a 1 + n - 1 d 2 · n , формулу бинома Ньютона a + b n = C n 0 · a n · C n 1 · a n - 1 · b + . . . + C n n - 1 · a · b n - 1 + C n n · b n .

В первом пункте мы разберем основные понятия, потом рассмотрим основы самого метода, а затем расскажем, как с его помощью доказывать равенства и неравенства.

Yandex.RTB R-A-339285-1

Понятия индукции и дедукции

Для начала рассмотрим, что такое вообще индукция и дедукция.

Определение 1

Индукция – это переход от частного к общему, а дедукция наоборот – от общего к частному.

Например, у нас есть утверждение: 254 можно разделить на два нацело. Из него мы можем сделать множество выводов, среди которых будут как истинные, так и ложные. Например, утверждение, что все целые числа, которые имеют в конце цифру 4 , могут делиться на два без остатка – истинное, а то, что любое число из трех знаков делится на 2 – ложное.

В целом можно сказать, что с помощью индуктивных рассуждений можно получить множество выводов из одного известного или очевидного рассуждения. Математическая индукция позволяет нам определить, насколько справедливы эти выводы.

Допустим, у нас есть последовательность чисел вида 1 1 · 2 , 1 2 · 3 , 1 3 · 4 , 1 4 · 5 , . . . , 1 n (n + 1) , где n обозначает некоторое натуральное число. В таком случае при сложении первых элементов последовательности мы получим следующее:

S 1 = 1 1 · 2 = 1 2 , S 2 = 1 1 · 2 + 1 2 · 3 = 2 3 , S 3 = 1 1 · 2 + 1 2 · 3 + 1 3 · 4 = 3 4 , S 4 = 1 1 · 2 + 1 2 · 3 + 1 3 · 4 + 1 4 · 5 = 4 5 , . . .

Используя индукцию, можно сделать вывод, что S n = n n + 1 . В третьей части мы докажем эту формулу.

В чем заключается метод математической индукции

В основе этого метода лежит одноименный принцип. Он формулируется так:

Определение 2

Некое утверждение будет справедливым для натурального значения n тогда, когда 1) оно будет верно при n = 1 и 2) из того, что это выражение справедливо для произвольного натурального n = k , следует, что оно будет верно и при n = k + 1 .

Применение метода математической индукции осуществляется в 3 этапа:

  1. Для начала мы проверяем верность исходного утверждения в случае произвольного натурального значения n (обычно проверка делается для единицы).
  2. После этого мы проверяем верность при n = k .
  3. И далее доказываем справедливость утверждения в случае, если n = k + 1 .

Как применять метод математической индукции при решении неравенств и уравнений

Возьмем пример, о котором мы говорили ранее.

Пример 1

Докажите формулу S n = 1 1 · 2 + 1 2 · 3 + . . . + 1 n (n + 1) = n n + 1 .

Решение

Как мы уже знаем, для применения метода математической индукции надо выполнить три последовательных действия.

  1. Для начала проверяем, будет ли данное равенство справедливым при n , равном единице. Получаем S 1 = 1 1 · 2 = 1 1 + 1 = 1 2 . Здесь все верно.
  2. Далее делаем предположение, что формула S k = k k + 1 верна.
  3. В третьем шаге нам надо доказать, что S k + 1 = k + 1 k + 1 + 1 = k + 1 k + 2 , основываясь на справедливости предыдущего равенства.

Мы можем представить k + 1 в качестве суммы первых членов исходной последовательности и k + 1:

S k + 1 = S k + 1 k + 1 (k + 2)

Поскольку во втором действии мы получили, что S k = k k + 1 , то можно записать следующее:

S k + 1 = S k + 1 k + 1 (k + 2) .

Теперь выполняем нужные преобразования. Нам потребуется выполнить приведение дроби к общему знаменателю, приведение подобных слагаемых, применить формулу сокращенного умножения и сократить то, что получилось:

S k + 1 = S k + 1 k + 1 (k + 2) = k k + 1 + 1 k + 1 (k + 2) = = k (k + 2) + 1 k + 1 (k + 2) = k 2 + 2 k + 1 k + 1 (k + 2) = (k + 1) 2 k + 1 (k + 2) = k + 1 k + 2

Таким образом, мы доказали равенство в третьем пункте, выполнив все три шага метода математической индукции.

Ответ: предположение о формуле S n = n n + 1 является верным.

Возьмем более сложную задачу с тригонометрическими функциями.

Пример 2

Приведите доказательство тождества cos 2 α · cos 4 α · . . . · cos 2 n α = sin 2 n + 1 α 2 n sin 2 α .

Решение

Как мы помним, первым шагом должна быть проверка верности равенства при n , равном единице. Чтобы это выяснить, нам надо вспомнить основные тригонометрические формулы.

cos 2 1 = cos 2 α sin 2 1 + 1 α 2 1 sin 2 α = sin 4 α 2 sin 2 α = 2 sin 2 α · cos 2 α 2 sin 2 α = cos 2 α

Следовательно, при n , равном единице, тождество будет верным.

Теперь предположим, что его справедливость сохранится при n = k , т.е. будет верно, что cos 2 α · cos 4 α · . . . · cos 2 k α = sin 2 k + 1 α 2 k sin 2 α .

Доказываем равенство cos 2 α · cos 4 α · . . . · cos 2 k + 1 α = sin 2 k + 2 α 2 k + 1 sin 2 α для случая, когда n = k + 1 , взяв за основу предыдущее предположение.

Согласно тригонометрической формуле,

sin 2 k + 1 α · cos 2 k + 1 α = = 1 2 (sin (2 k + 1 α + 2 k + 1 α) + sin (2 k + 1 α - 2 k + 1 α)) = = 1 2 sin (2 · 2 k + 1 α) + sin 0 = 1 2 sin 2 k + 2 α

Следовательно,

cos 2 α · cos 4 α · . . . · cos 2 k + 1 α = = cos 2 α · cos 4 α · . . . · cos 2 k α · cos 2 k + 1 α = = sin 2 k + 1 α 2 k sin 2 α · cos 2 k + 1 α = 1 2 · sin 2 k + 1 α 2 k sin 2 α = sin 2 k + 2 α 2 k + 1 sin 2 α

Пример решения задачи на доказательство неравенства с применением этого метода мы привели в статье о методе наименьших квадратов. Прочтите тот пункт, в котором выводятся формулы для нахождения коэффициентов аппроксимации.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter