Простые механизмы. Наклонная плоскость. Движение по наклонной плоскости Для чего используют наклонную плоскость

К простым механизмам кроме рычага и блока относятся также наклонная плоскость и ее разновидности: клин и винт.

НАКЛОННАЯ ПЛОСКОСТЬ

Наклонная плоскость применяется для перемещения тяжелых предметов на более высокий уровень без их непосредственного поднятия.
К таким устройствам относятся пандусы, эскалаторы, обычные лестницы и конвейеры.

Если нужно поднять груз на высоту, всегда легче воспользоваться пологим подъемом, чем крутым. Причем, чем положе уклон, тем легче выполнить эту работу. Когда время и расстояние не имеют большого значения, а важно поднять груз с наименьшим усилием, наклонная плоскость оказывается незаменима.

С помощью этих рисунков можно объяснить, как работает простой механизм НАКЛОННАЯ ПЛОСКОСТЬ.
Классические расчеты действия наклонной плоскости и других простых механизмов принадлежат выдающемуся античному механику Архимеду из Сиракуз.

При строительстве храмов египтяне транспортировали, поднимали и устанавливали колоссальные обелиски и статуи, вес которых составлял десятки и сотни тонн! Все это можно было сделать, используя среди других простых механизмов наклонную плоскость.

Главным подъемным приспособлением египтян была наклонная плоскость - рампа. Остов рампы, то есть ее боковые стороны и перегородки. По мере роста пирамиды рампа надстраивалась. По этим рампам камни тащили на салазках. Угол наклона рампы был очень незначительным - 5 или 6 градусов.

Колонны древнего египетского храма в Фивах.

Каждую из этих огромных колонн рабы втаскивали по рампе- наклонной плоскости. Когда колонна вползала в яму, через лаз выгребали песок, а затем разбирали кирпичную стенку и убирали насыпь. Таким образом, например, наклонная дорога к пирамиде Хафра при высоте подъема в 46 метров имела длину около полукилометра.

Тело на наклонной плоскости удерживается силой, которая по величине во столько раз меньше веса этого тела, во сколько раз длина наклонной плоскости больше ее высоты".
Это условие равновесия сил на наклонной плоскости сформулировал голландский ученый Симон Стевин (1548-1620).

Рисунок на титульном листе книги С. Стевина, которым он подтверждает свою формулировку.

Очень остроумно использована наклонная плоскость на Красноярской ГЭС. Здесь вместо шлюзов действует судовозная камера, движущаяся по наклонной эстакаде. Для ее передвижения необходимо тяговое усилие в 4000 кН.

А почему горные дороги вьются пологим "серпантином"?

Клин - одна из разновидностей простого механизма под названием "наклонная плоскость". Клин состоит из двух наклонных плоскостей, основания которых соприкасаются. Его применяют, чтобы получить выигрыш в силе, то есть при помощи меньшей силы противодействовать большей силе.

При рубке дров, чтобы облегчить работу, в трещину полена вставляют металлический клин и бьют по нему обухом топора.

Идеальный выигрыш в силе, даваемый клином, равен отношению его длины к толщине на тупом конце. Из-за большого трения его КПД столь мал, что идеальный выигрыш не имеет особого значения

Другой разновидностью наклонной плоскости является винт.
Винт - наклонная плоскость, навитая на ось. Резьба винта – это наклонная плоскость, многократно обернутая вокруг цилиндра.

Из-за большого трения его КПД столь мал, что идеальный выигрыш не имеет особого значения. В зависимости от направления подъема наклонной плоскости винтовая резьба может быть левой или правой.
Примеры простых устройств с винтовой резьбой – домкрат, болт с гайкой, микрометр, тиски.

Наклонная плоскость представляет собой плоскую поверхность, расположенную под тем или иным углом к горизонтали. Она позволяет поднять груз с меньшей силой, чем если бы этот груз поднимался вертикально вверх. На наклонной плоскости груз поднимается вдоль этой плоскости. При этом он преодолевает большее расстояние, чем если бы поднимался вертикально.

Примечание 1

Причем во сколько раз происходит выигрыш в силе, во столько раз будет больше расстояние, которое преодолеет груз.

Рисунок 1. Наклонная плоскость

Если высота, на которую надо поднять груз, равна $h$, и при этом затрачивалась бы сила $F_h$, а длина наклонной плоскости $l$, и при этом затрачивается сила $F_l$, то $l$ так относится к $h$, как $F_h$ относится к $F_l$: $l/h = F_h/F_l$... Однако $F_h$ - это вес груза ($P$). Поэтому обычно записывают так: $l/h = P/F$, где $F$ - сила, поднимающая груз.

Величина силы $F$, которую надо приложить к грузу весом $Р$, чтобы тело находилось в равновесии на наклонной плоскости, равна $F_1 = Р_h/l = Рsin{\mathbf \alpha }$, если сила $Р$ приложена параллельно наклонной плоскости (рис.2, а), и $F_2$ = $Р_h/l = Рtg{\mathbf \alpha }$, если сила $Р$ приложена параллельно основанию наклонной плоскости (рис.2, б).

Рисунок 2. Движение груза по наклонной плоскости

а) сила параллельна плоскости б) сила параллельна основанию

Наклонная плоскость дает выигрыш в силе, с ее помощью можно легче поднять груз на высоту. Чем меньше угол $\alpha $, тем больше выигрыш в силе. Если угол $\alpha $ меньше угла трения, то груз самопроизвольно не будет двигаться, и нужно усилие, чтобы тянуть его вниз.

Если учесть силы трения между грузом и наклонной плоскостью, то для $F_1$ и $F_2$ получаются следующие значения: $F_1=Рsin($${\mathbf \alpha }$$\pm$${\mathbf \varphi }$)/cos${\mathbf \varphi }$; $F_2=Рtg($${\mathbf \alpha }$$\pm$${\mathbf \varphi }$)

Знак плюс относится к передвижению вверх, знак минус - к опусканию груза. Коэффициент полезного действия наклонной плоскости ${\mathbf \eta }$1=sin${\mathbf \alpha }$cos${\mathbf \alpha }$/sin(${\mathbf \alpha }$+${\mathbf \varphi }$), если сила $Р$ направлена параллельно плоскости, и ${\mathbf \eta }$2=tg${\mathbf \alpha }$/tg(${\mathbf \alpha }$+${\mathbf \varphi }$), если сила $Р$ направлена параллельно основанию наклонной плоскости.

Наклонная плоскость подчиняется «золотому правилу механики». Чем меньше угол между поверхностью и наклонной плоскостью (т. е. чем она более пологая, не круто поднимающаяся вверх), тем меньше надо прикладывать сил для подъема груза, но и большее расстояние необходимо будет преодолеть.

При отсутствии сил трения выигрыш в силе $K = P/F = 1/sin$$\alpha = l/h$. В реальных условиях из-за действия силы трения КПД наклонной плоскости меньше 1, выигрыш в силе меньше отношения $l/h$.

Пример 1

Груз массой 40 кг поднимают по наклонной плоскости на высоту 10 м при этом прикладывая силу 200 Н (рис.3). Какова длина наклонной плоскости? Трением пренебречь.

${\mathbf \eta }$ = 1

При движении тела по наклонной плоскости отношение прилагаемой силы к весу тела равно отношению длины наклонной плоскости к её высоте: $\frac{F}{P}=\frac{l}{h}=\frac{1}{{sin {\mathbf \alpha }\ }}$. Следовательно, $l=\frac{Fh}{mg}=\ \frac{200\cdot 10}{40\cdot 9,8}=5,1\ м$.

Ответ: Длина наклонной плоскости 5,1 м

Пример 2

Два тела с массами $m_1$ = 10 г и $m_2$ = 15 г связаны нитью, перекинутой через неподвижный блок, установленный на наклонной плоскости (рис. 4). Плоскость образует с горизонтом угол $\alpha $ = 30${}^\circ$. Найти ускорение, с которым будут двигаться эти тела.

${\mathbf \alpha }$ = 30 градусов

$g$ = 9.8 $м/c_2$

Направим ось ОХ вдоль наклонной плоскости, а ось ОY - перпендикулярно ей, и спроектируем на эти оси вектора $\ {\overrightarrow{Р}}_1\ и\ {\overrightarrow{Р}}_2$. Как видно из рисунка, равнодействующая сил, приложенных к каждому из тел, равна разности проекций векторов $\ {\overrightarrow{Р}}_1\ и\ {\overrightarrow{Р}}_2$ на ось ОХ:

\[\left|\overrightarrow{R}\right|=\left|P_{2x}-P_{1x}\right|=\left|m_2g{sin \alpha \ }-m_1g{sin \alpha \ }\right|=g{sin \alpha \left|m_2-m_1\right|\ }\] \[\left|\overrightarrow{R}\right|=9.8\cdot {sin 30{}^\circ \ }\cdot \left|0.015-0.01\right|=0.0245\ H\] \

Ответ: Ускорения тел $a_1=2,45\frac{м}{с^2};\ \ \ \ \ \ a_2=1,63\ м/с^2$

Движение тела по наклонной плоскости - это классический пример движения тела под действием нескольких несонаправленных сил. Стандартный метод решения задач о такого рода движении состоит в разложении векторов всех сил по компонентам, направленным вдоль координатных осей. Такие компоненты являются линейно независимыми. Это позволяет записать второй закон Ньютона для компонент вдоль каждой оси отдельно. Таким образом второй закон Ньютона, представляющий собой векторное уравнение, превращается в систему из двух (трех для трехмерного случая) алгебраических уравнений.

Силы, действующие на брусок,
случай ускоренного движения вниз

Рассмотрим тело, которое соскальзывает вниз по наклонной плоскости. В этом случае на него действуют следующие силы:

  • Сила тяжести mg , направленная вертикально вниз;
  • Сила реакции опоры N , направленная перпендикулярно плоскости;
  • Сила трения скольжения F тр, направлена противоположно скорости (вверх вдоль наклонной плоскости при соскальзывании тела)

При решении задач, в которых фигурирует наклонная плоскость часто удобно ввести наклонную систему координат, ось OX которой направлена вдоль плоскости вниз. Это удобно, потому что в этом случае придется раскладывать на компоненты только один вектор - вектор силы тяжести mg , а вектора силы трения F тр и силы реакции опоры N уже направлены вдоль осей. При таком разложении x-компонента силы тяжести равна mg sin(α ) и соответствует «тянущей силе», ответственной за ускоренное движение вниз, а y-компонента - mg cos(α ) = N уравновешивает силу реакции опоры, поскольку вдоль оси OY движение тела отсутствует.
Сила трения скольжения F тр = µN пропорциональна силе реакции опоры. Это позволяет получить следующее выражение для силы трения: F тр = µmg cos(α ). Эта сила противонаправлена «тянущей» компоненте силы тяжести. Поэтому для тела, соскальзывающего вниз , получаем выражения суммарной равнодействующей силы и ускорения:

F x = mg (sin(α ) – µ cos(α ));
a x = g (sin(α ) – µ cos(α )).

Не трудно видеть, что если µ < tg(α ), то выражение имеет положительный знак и мы имеем дело с равноускоренным движением вниз по наклонной плоскости. Если же µ > tg(α ), то ускорение будет иметь отрицательный знак и движение будет равнозамедленным. Такое движение возможно только в случае, если телу придана начальная скорость по направлению вниз по склону. В этом случае тело будет постепенно останавливаться. Если при условии µ > tg(α ) предмет изначально покоится, то он не будет начинать соскальзывать вниз. Здесь сила трения покоя будет полностью компенсировать «тянущую» компоненту силы тяжести.



Когда коэффициент трения в точности равен тангенсу угла наклона плоскости: µ = tg(α ), мы имеем дела с взаимной компенсацией всех трех сил. В этом случае, согласно первому закону Ньютона тело может либо покоиться, либо двигаться с постоянной скоростью (При этом равномерное движение возможно только вниз).

Силы, действующие на брусок,
скользящий по наклонной плоскости:
случай замедленного движения вверх

Однако, тело может и заезжать вверх по наклонной плоскости. Примером такого движения является движение хоккейной шайбы вверх по ледяной горке. Когда тело движется вверх, то и сила трения и «тянущая» компонента силы тяжести направлены вниз вдоль наклонной плоскости. В этом случае мы всегда имеем дело с равнозамедленным движением, поскольку суммарная сила направлена в противоположную скорости сторону. Выражение для ускорения для этой ситуации получается аналогичным образом и отличается только знаком. Итак для тела, скользящего вверх по наклонной плоскости , имеем.

В данной статье рассказывается о том, как решать задачи про движение по наклонной плоскости. Рассмотрено подробное решение задачи о движении связанных тел по наклонной плоскости из ЕГЭ по физике.

Решение задачи о движении по наклонной плоскости

Прежде чем перейти непосредственно к решению задачи, как репетитор по математике и физике, рекомендую тщательно проанализировать ее условие. Начать нужно с изображения сил, которые действуют на связанные тела:

Здесь и — силы натяжения нити, действующие на левое и правое тело, соответственно, — сила реакции опоры, действующая на левое тело, и — силы тяжести, действующие на левое и правое тело, соответственно. С направлением этих сил все понятно. Сила натяжения направлена вдоль нити, сила тяжести вертикально вниз, а сила реакции опоры перпендикулярно наклонной плоскости.

А вот с направлением силы трения придется разбираться отдельно. Поэтому на рисунке она изображена пунктирной линией и подписана со знаком вопроса. Интуитивно понятно, что если правый груз будет «перевешивать» левый, то сила трения будет направлена противоположно вектору . Наоборот, если левый груз будет «перевешивать» правый, то сила трения будет сонаправлена с вектором .

Правый груз тянет вниз сила Н. Здесь мы взяли ускорение свободного падения м/с 2 . Левый груз вниз тоже тянет сила тяжести, но не вся целиком, а только ее «часть», поскольку груз лежит на наклонной плоскости. Эта «часть» равна проекции силы тяжести на наклонную плоскости, то есть катету в прямоугольном треугольнике , изображенном на рисунке, то есть равна Н.

То есть «перевешивает» все-таки правый груз. Следовательно, сила трения направлена так, как показано на рисунке (мы ее нарисовали от центра масс тела, что возможно в случае, когда тело можно моделировать материальной точкой):

Второй важный вопрос, с которым нужно разобраться, будет ли вообще двигаться эта связанная система? Вдруг окажется так, что сила трения между левым грузом и наклонной плоскостью будет настолько велика, что не даст ему сдвинуться с места?

Такая ситуация будет возможна в том случае, когда максимальная сила трения, модуль которой определяется по формуле (здесь — коэффициент трения между грузом и наклонной плоскостью, — сила реакции опоры, действующая на груз со стороны наклонной плоскости), окажется больше той силы, которая старается привести систему с движение. То есть той самой «перевешивающей» силы, которая равна Н.

Модуль силы реакции опоры равен длине катета в треугольнике по 3-музакону Ньютона (с какой по величине силой груз давит на наклонную плоскость, с такой же по величине силой наклонная плоскость действует на груз). То есть сила реакции опоры равна Н. Тогда максимальная величина силы трения составляет Н, что меньше, чем величина «перевешивающей силы».

Следовательно, система будет двигаться, причем двигаться с ускорением. Изобразим на рисунке эти ускорения и оси координат, которые нам понадобятся далее при решении задачи:

Теперь, после тщательного анализа условия задачи, мы готовы приступить к ее решению.

Запишем 2-ой закон Ньютона для левого тела:

А в проекции на оси координатной системы получаем:

Здесь с минусом взяты проекции, векторы которых направлен против направления соответствующей оси координат. С плюсом взяты проекции, векторы которых сонаправлен с соответствующей осью координат.

Еще раз подробно объясним, как находить проекции и . Для этого рассмотрим прямоугольный треугольник , изображенный на рисунке. В этом треугольнике и . Также известно, что в этом прямоугольном треугольнике . Тогда и .

Вектор ускорения целиком лежит на оси , поэтому и . Как мы уже вспоминали выше, по определению модуль силы трения равен произведению коэффициента трения на модуль силы реакции опоры. Следовательно, . Тогда исходная система уравнений принимает вид:

Запишем теперь 2-ой закон Ньютона для правого тела:

В проекции на ось получаем.

Наклонная плоскость представляет собой плоскую поверхность, расположенную под тем или иным углом к горизонтали. Она позволяет поднять груз с меньшей силой, чем если бы этот груз поднимался вертикально вверх. На наклонной плоскости груз поднимается вдоль этой плоскости. При этом он преодолевает большее расстояние, чем если бы поднимался вертикально.

Примечание 1

Причем во сколько раз происходит выигрыш в силе, во столько раз будет больше расстояние, которое преодолеет груз.

Рисунок 1. Наклонная плоскость

Если высота, на которую надо поднять груз, равна $h$, и при этом затрачивалась бы сила $F_h$, а длина наклонной плоскости $l$, и при этом затрачивается сила $F_l$, то $l$ так относится к $h$, как $F_h$ относится к $F_l$: $l/h = F_h/F_l$... Однако $F_h$ - это вес груза ($P$). Поэтому обычно записывают так: $l/h = P/F$, где $F$ - сила, поднимающая груз.

Величина силы $F$, которую надо приложить к грузу весом $Р$, чтобы тело находилось в равновесии на наклонной плоскости, равна $F_1 = Р_h/l = Рsin{\mathbf \alpha }$, если сила $Р$ приложена параллельно наклонной плоскости (рис.2, а), и $F_2$ = $Р_h/l = Рtg{\mathbf \alpha }$, если сила $Р$ приложена параллельно основанию наклонной плоскости (рис.2, б).

Рисунок 2. Движение груза по наклонной плоскости

а) сила параллельна плоскости б) сила параллельна основанию

Наклонная плоскость дает выигрыш в силе, с ее помощью можно легче поднять груз на высоту. Чем меньше угол $\alpha $, тем больше выигрыш в силе. Если угол $\alpha $ меньше угла трения, то груз самопроизвольно не будет двигаться, и нужно усилие, чтобы тянуть его вниз.

Если учесть силы трения между грузом и наклонной плоскостью, то для $F_1$ и $F_2$ получаются следующие значения: $F_1=Рsin($${\mathbf \alpha }$$\pm$${\mathbf \varphi }$)/cos${\mathbf \varphi }$; $F_2=Рtg($${\mathbf \alpha }$$\pm$${\mathbf \varphi }$)

Знак плюс относится к передвижению вверх, знак минус - к опусканию груза. Коэффициент полезного действия наклонной плоскости ${\mathbf \eta }$1=sin${\mathbf \alpha }$cos${\mathbf \alpha }$/sin(${\mathbf \alpha }$+${\mathbf \varphi }$), если сила $Р$ направлена параллельно плоскости, и ${\mathbf \eta }$2=tg${\mathbf \alpha }$/tg(${\mathbf \alpha }$+${\mathbf \varphi }$), если сила $Р$ направлена параллельно основанию наклонной плоскости.

Наклонная плоскость подчиняется «золотому правилу механики». Чем меньше угол между поверхностью и наклонной плоскостью (т. е. чем она более пологая, не круто поднимающаяся вверх), тем меньше надо прикладывать сил для подъема груза, но и большее расстояние необходимо будет преодолеть.

При отсутствии сил трения выигрыш в силе $K = P/F = 1/sin$$\alpha = l/h$. В реальных условиях из-за действия силы трения КПД наклонной плоскости меньше 1, выигрыш в силе меньше отношения $l/h$.

Пример 1

Груз массой 40 кг поднимают по наклонной плоскости на высоту 10 м при этом прикладывая силу 200 Н (рис.3). Какова длина наклонной плоскости? Трением пренебречь.

${\mathbf \eta }$ = 1

При движении тела по наклонной плоскости отношение прилагаемой силы к весу тела равно отношению длины наклонной плоскости к её высоте: $\frac{F}{P}=\frac{l}{h}=\frac{1}{{sin {\mathbf \alpha }\ }}$. Следовательно, $l=\frac{Fh}{mg}=\ \frac{200\cdot 10}{40\cdot 9,8}=5,1\ м$.

Ответ: Длина наклонной плоскости 5,1 м

Пример 2

Два тела с массами $m_1$ = 10 г и $m_2$ = 15 г связаны нитью, перекинутой через неподвижный блок, установленный на наклонной плоскости (рис. 4). Плоскость образует с горизонтом угол $\alpha $ = 30${}^\circ$. Найти ускорение, с которым будут двигаться эти тела.

${\mathbf \alpha }$ = 30 градусов

$g$ = 9.8 $м/c_2$

Направим ось ОХ вдоль наклонной плоскости, а ось ОY - перпендикулярно ей, и спроектируем на эти оси вектора $\ {\overrightarrow{Р}}_1\ и\ {\overrightarrow{Р}}_2$. Как видно из рисунка, равнодействующая сил, приложенных к каждому из тел, равна разности проекций векторов $\ {\overrightarrow{Р}}_1\ и\ {\overrightarrow{Р}}_2$ на ось ОХ:

\[\left|\overrightarrow{R}\right|=\left|P_{2x}-P_{1x}\right|=\left|m_2g{sin \alpha \ }-m_1g{sin \alpha \ }\right|=g{sin \alpha \left|m_2-m_1\right|\ }\] \[\left|\overrightarrow{R}\right|=9.8\cdot {sin 30{}^\circ \ }\cdot \left|0.015-0.01\right|=0.0245\ H\] \

Ответ: Ускорения тел $a_1=2,45\frac{м}{с^2};\ \ \ \ \ \ a_2=1,63\ м/с^2$